
Typesetting your paper for ŠVK
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1 Introduction and examples

This paper presents a sample file for the use of ŠVK’s
LATEX macro package. This paper also serves as an
example of ŠVK’s stylistic preferences for the for-
matting of such elements as bibliographic references,
displayed equations, and equation arrays, among oth-
ers. Some special circumstances are not dealt with in
this sample file; for such information one should see
the included documentation file.

Following text shows examples of the most com-
mon constructs used in LATEX.

1.1 Sample text

Let S = [si j] (1 ≤ i, j ≤ n) be a (0,1,−1)-matrix
of order n. Then S is a sign-nonsingular ma-
trix (SNS-matrix) provided that each real matrix
with the same sign pattern as S is nonsingular.
There has been considerable recent interest in
constructing and characterizing SNS-matrices
[Brualdi and Shader, 1991], [Klee et al., 1984].
There has also been interest in strong forms of
sign-nonsingularity [Drew et al., 1992]. In this paper
we give a new generalization of SNS-matrices and
investigate some of their basic properties.

Let S = [si j] be a (0,1,−1)-matrix of order n and
let C = [ci j] be a real matrix of order n. The pair
(S,C) is called a matrix pair of order n. Throughout,
X = [xi j] denotes a matrix of order n whose entries
are algebraically independent indeterminates over the
real field. Let S ◦ X denote the Hadamard product
(entrywise product) of S and X . We say that the
pair (S,C) is a sign-nonsingular matrix pair of order
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n, abbreviated SNS-matrix pair of order n, provided
that the matrix

A = S◦X +C

is nonsingular for all positive real values of the xi j.
If C = O then the pair (S,O) is a SNS-matrix pair if
and only if S is a SNS-matrix. If S = O then the pair
(O,C) is a SNS-matrix pair if and only if C is nonsin-
gular. Thus SNS-matrix pairs include both nonsingu-
lar matrices and sign-nonsingular matrices as special
cases.

1.2 An enumeration list

In this paper we consider the evaluation of integrals
of the following forms:

∫ b

a

(
∑

i
EiBi,k,x(t)

)(
∑

j
FjB j,l,y(t)

)
dt, (1)

∫ b

a
f (t)

(
∑

i
EiBi,k,x(t)

)
dt, (2)

where Bi,k,x is the ith B-spline of order k defined over
the knots xi,xi+1, . . . ,xi+k. We will consider B-splines
normalized so that their integral is one. The splines
may be of different orders and defined on different
knot sequences x and y. Often the limits of integration
will be the entire real line, −∞ to +∞. Note that (1)
is a special case of (2) where f (t) is a spline.

There are five different methods for calculating (1)
that will be considered:

1. Use Gauss quadrature on each interval.

2. Convert the integral to a linear combination of
integrals of products of B-splines and provide a
recurrence for integrating the product of a pair
of B-splines.

3. Convert the sums of B-splines to piecewise
Bézier format and integrate segment by segment
using the properties of the Bernstein polynomi-
als.
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4. Express the product of a pair of B-splines as a
linear combination of B-splines. Use this to re-
formulate the integrand as a linear combination
of B-splines, and integrate term by term.

5. Integrate by parts.

Of these five, only methods 1 and 5 are suitable
for calculating (2). The first four methods will be
touched on and the last will be discussed at length.

1.3 Some displayed equations and
{eqnarray}s

By introducing the product topology on Rm×m×Rn×n

with the induced inner product

〈(A1,B1),(A2,B2)〉 := 〈A1,A2〉+ 〈B1,B2〉, (3)

we calculate the Fréchet derivative of F as follows:

F ′(U,V )(H,K) = 〈R(U,V ),HΣV T +UΣKT

−P(HΣV T +UΣKT )〉
= 〈R(U,V ),HΣV T +UΣKT 〉
= 〈R(U,V )V Σ

T ,H〉+
〈ΣTUT R(U,V ),KT 〉. (4)

In the middle line of (4) we have used the fact that
the range of R is always perpendicular to the range
of P. The gradient ∇F of F , therefore, may be inter-
preted as the pair of matrices:

∇F(U,V ) = (R(U,V )V Σ
T ,R(U,V )TUΣ)

∈ Rm×m×Rn×n. (5)

Thus, the vector field

d(U,V )

dt
=−g(U,V ) (6)

defines a steepest descent flow on the manifold
O(m)×O(n) for the objective function F(U,V ).

2 Main results

Let (S,C) be a matrix pair of order n. The determi-
nant

det(S◦X +C)

is a polynomial in the indeterminates of X of degree
at most n over the real field. We call this polynomial
the indicator polynomial of the matrix pair (S,C) be-
cause of the following proposition.

Theorem 1. The matrix pair (S,C) is a SNS-matrix
pair if and only if all the nonzero coefficients in its
indicator polynomial have the same sign and there is
at least one nonzero coefficient.

Proof. Assume that (S,C) is a SNS-matrix pair.
Clearly the indicator polynomial has a nonzero co-
efficient. Consider a monomial

bi1,...,ik; j1,..., jk xi1 j1 · · ·xik jk (7)

occurring in the indicator polynomial with a nonzero
coefficient. By taking the xi j that occur in
(7) large and all others small, we see that any
monomial that occurs in the indicator polynomial
with a nonzero coefficient can be made to dom-
inate all others. Hence all the nonzero coeffi-
cients have the same sign. The converse is im-
mediate.

For SNS-matrix pairs (S,C) with C =O the indica-
tor polynomial is a homogeneous polynomial of de-
gree n. In this case Theorem 1 is a standard fact about
SNS-matrices.

Lemma 1 (Stability). Given T > 0, suppose that
‖ε(t)‖1,2 ≤ hq−2 for 0≤ t ≤ T and q≥ 6. Then there
exists a positive number B that depends on T and the
exact solution ψ only such that for all 0≤ t ≤ T ,

d
dt
‖ε(t)‖1,2 ≤ B(hq−3/2 +‖ε(t)‖1,2) . (8)

The function B(T ) can be chosen to be nondecreasing
in time.

Theorem 2. The maximum number of nonzero en-
tries in a SNS-matrix S of order n equals

n2 +3n−2
2

with equality if and only if there exist permutation
matrices such that P|S|Q = Tn where

Tn =



1 1 · · · 1 1 1
1 1 · · · 1 1 1
0 1 · · · 1 1 1
...

...
. . .

...
...

...
0 0 · · · 1 1 1
0 0 · · · 0 1 1


. (9)



We note for later use that each submatrix of Tn of
order n−1 has all 1s on its main diagonal.

We now obtain a bound on the number of nonzero
entries of S in a SNS-matrix pair (S,C) in terms of
the degree of the indicator polynomial. We denote
the strictly upper triangular (0,1)-matrix of order m
with all 1s above the main diagonal by Um. The all 1s
matrix of size m by p is denoted by Jm,p.

Definition 1. Let S be an isolated invariant set with
isolating neighborhood N. An index pair for S is a
pair of compact sets (N1,N0) with N0 ⊂ N1 ⊂ N such
that:

1. cl(N1\N0) is an isolating neighborhood for S.

2. Ni is positively invariant relative to N for i =
0,1, i.e., given x ∈ Ni and x · [0, t] ⊂ N, then x ·
[0, t]⊂ Ni.

3. N0 is an exit set for N1, i.e. if x ∈ N1, x · [0,∞) 6⊂
N1, then there is a T ≥ 0 such that x · [0,T ]⊂ N1
and x ·T ∈ N0.

2.1 Numerical experiments

We conducted numerical experiments in computing
inexact Newton steps for discretizations of a modified
Bratu problem, given by

∆w+ cew +d
∂w
∂x

= f in D,
(10)

w = 0 on ∂D,

where c and d are constants. The actual Bratu prob-
lem has d = 0 and f ≡ 0. It provides a simpli-
fied model of nonlinear diffusion phenomena, e.g.,
in combustion and semiconductors, and has been
considered by Glowinski, Keller, and Rheinhardt
[Glowinski et al., 1985], as well as by a number of
other investigators; see [Glowinski et al., 1985] and
the references therein. See also problem 3 by Glowin-
ski and Keller and problem 7 by Mittelmann in the
collection of nonlinear model problems assembled by
Moré [Moré, 1990]. The modified problem (10) has
been used as a test problem for inexact Newton meth-
ods by Brown and Saad [Brown and Saad, 1990].

In our experiments, we took D = [0,1]× [0,1], f ≡
0, c = d = 10, and discretized (10) using the usual
second-order centered differences over a 100× 100
mesh of equally spaced points in D. In GMRES(m),
we took m = 10 and used fast Poisson right precon-
ditioning as in the experiments in §2. The computing
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Figure 1: Graph of the function sin(x)/x.

environment was as described in §2. All computing
was done in double precision.

In the first set of experiments, we allowed each
method to run for 40 GMRES(m) iterations, start-
ing with zero as the initial approximate solution, after
which the limit of residual norm reduction had been
reached. The results are shown in Fig. 1. In Fig. 1,
the top curve was produced by method FD1. The sec-
ond curve from the top is actually a superposition of
the curves produced by methods EHA2 and FD2; the
two curves are visually indistinguishable. Similarly,
the third curve from the top is a superposition of the
curves produced by methods EHA4 and FD4, and the
fourth curve from the top, which lies barely above
the bottom curve, is a superposition of the curves pro-
duced by methods EHA6 and FD6. The bottom curve
was produced by method A.

In our second set of experiments, we took c = d =
100 and carried out trials analogous to those in the
first set above. No preconditioning was used in these
experiments, both because we wanted to compare
the methods without preconditioning and because the
fast Poisson preconditioning used in the first set of
experiments is not cost effective for these large val-
ues of c and d. We first allowed each method to run
for 600 GMRES(m) iterations, starting with zero as
the initial approximate solution, after which the limit
of residual norm reduction had been reached.
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Table 1: Statistics over 20 trials of GMRES(m) iteration numbers, F-evaluations, and run times required to
reduce the residual norm by a factor of ε . For each method, the number of GMRES(m) iterations and F-
evaluations was the same in every trial.

Number of Number of Mean Run Time Standard
Method ε Iterations F-Evaluations (Seconds) Deviation
EHA2 10−10 26 32 47.12 .1048
FD2 10−10 26 58 53.79 .1829

EHA4 10−12 30 42 56.76 .1855
FD4 10−12 30 132 81.35 .3730

EHA6 10−12 30 48 58.56 .1952
FD6 10−12 30 198 100.6 .3278
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